论文部分内容阅读
农村小学存在着两类数学教师,一类教师工作兢兢业业,整天忙于批改与订正,是公认的好教师形象;另一类教师常常一上完课就无所事事了,偶尔进入教室也只是与学生说说话,很少见到紧张的工作场面,可每次期末考试的成绩总让人大吃一惊:后者所教的班级,数学成绩不低于甚至高于前者。学生的状态也不一样:前者所在班级的学生上课时中规中矩,回答问题基本上是标准答案;而后者所在班级的学生上课时神采飞扬,敢说敢问,作业可以在课堂内完成80%以上。唯一相同之处就是教师要求学生上课时专心听讲,作业认真仔细。
对这样的现象我迷惑不解,深深地思索:为什么“好教师”没有教出好学生呢?所谓的“懒教师”把精力放在哪里呢?经过观察发现:前者忙于找习题、批习题,很少对教学内容进行深入的钻研与分析,课堂教学只是直线型的你问我答式;而后者的课堂经常把很多的知识点融合在一起,让学生在不断的讨论与研究当中慢慢地领悟,尽管花了不少时间才揭示知识的本质,但经常会有惊人之举,学生学得津津有味!
此刻,我不由得想到教育家刘默耕说过的话:“教学一箭一雕不行,要一箭多雕才行,既要学生真枪实弹地干,又要让学生在真枪实弹中真正流汗。”第一类教师的教学是“一箭一雕”,学生直来直往,思维单一;第二类教师则是“一箭多雕”,学生在探究中虽然走了许多弯路,花费了许多精力,磕磕碰碰地到达目的地,但一路上把知识的“毛细血管”都触摸了一番。细细品味两类教师:第二类教师不仅让学生参与了获得知识的全过程,而且激发了学生学习的兴趣,学生从原来的“要我学”变成了“我要学”,提高了课堂教学效率。于是我想:平淡的、肤浅的学习是不可取的,数学学习更需要有助于学生学力的提高和终身发展的自主、探究活动。“一箭多雕”使数学教学变得更有张力和创造力,并给新课程下的数学教师带来了新的挑战。我们置身于高效减负的大背景下,如何在四十分钟内让学生学得轻松、学得扎实?我对此进行了初步的探索。
一、巧设精准的问点,拨动思维之弦
俗话说:“钱要化在刀口上,话要说在点子上。”这充分说明了“点”的特殊地位。课堂提问是融语言、感情于一体的信息交流,一箭多雕的提问可“拨动思维之弦”,所以教师要把握提问时机,讲究提问技巧。所谓“问点”,就是发问的支点,通过巧设这个支点可以轻而易举地触摸到数学的本质。
例如,一位教师教学六年级“稍复杂的应用题”一课的练习部分,设计了一道很有意义的题。如下:
小小理财家
意外仿佛是“一箭一雕”的附属品,如果教师心中没有对教材的深入理解和钻研,是很难会有惊喜产生的。在农村,学生的差异很大:家长文化素养比较高的,课堂不足课外延伸,课外辅导中有相当部分高于学生当前的水平,甚至超出课本和练习册内容;家长文化素质相对较低的,缺乏科学有效的家庭教育方法,对孩子“无法指导”。而课堂正是减少这种差异的最合适的地方。如上例中,正因为教师把握了知识的深层次内涵,使更多的农村学生同样有出采之处,所以捕捉意外的关键是教师的引导。培养学生的数学学习能力并非是一朝一夕的事,它需要经历逐级递进、日积月累、不断深化的过程,使学生在教师的引领下都有明显的进步,达到共同发展的目的。
三、雕琢渗透的艺术,激发学生的慧根
苏霍姆林斯基说过:“学生来到学校里不仅是为了取得一份知识的行囊,更主要的是为了变得更聪明。”数学的思想方法是解决各类问题的手段与保障,这些思想和方法不能硬生生地塞给学生,应该结合教学内容有机地进行渗透,让学生在不知不觉中感悟数学、理解数学。所以,教师必须不断地雕琢渗透的艺术,使之细腻、持久。
每每想起“真分数和假分数的认识”这节课,我心里总会产生一种兴奋。整节课没有华丽的课件,没有动人的图案,只依靠几张小纸片使思想与内容浑然一体。教学片断如下:
第(二)层次
……
师(已教学真分数,黑板上贴有表示3/4的长方形纸):4/4表示4个1/4,5/4呢?
生1:5/4表示5个1/4。
师:现在这张纸还能表示出5/4吗?你有什么好办法?
生2:再取一个1/4组合成。
师:请刚才涂1/4的同学都上台组成5/4。
学生作品展示:
师(再一格一格地涂):现在表示什么?(6/4、7/4、8/4)
师:谁和老师合作组成假分数?请其他同学说一说你是怎么想的?
生4:一个一个地加单位“1”。
师(出示下图):为什么分母还是8?
从表中得出:兔有5只,鸡有8-5=3(只)。
2.图示法
从图中得出:兔有5只,鸡有8-5=3(只)。
3.金鸡独立法
将所有的鸡抬起一只脚,所有的兔抬起两只脚,则脚有26÷2=13(只)。因为金鸡独立,此时鸡的头数和脚数相同,所以兔有13-8=5(只),鸡有3只。
这时我提问:“请你根据刚才的思路,说一说假设法的意义。”学生基本上都能根据罗列法和图示法顺利地说出过程。
我在教学罗列法过程中,还要求学生把所有的情况全列出来,这样可以为算法多样化做好铺垫。如:大、小卡车往城市运29吨蔬菜,大卡车每辆每次运5吨,小卡车每辆每次运3吨,大小卡车各用几辆能一次运完?学生必须罗列所有情况才能得出多种答案,很有现实意义。我想,这样的教学是彻底的、有效的。其实,数学问题的研究不可能是一帆风顺的,肯定会有杂乱无章的思维产生,这些表面松散的思维实际上都指向同一个方向。学生经历了假设法的形成过程,才会真正理解所学内容,将其内化为自己的知识。
《数学课程标准》指出:“数学学习应当是有意义的,富有挑战性的;学生的数学学习活动应当是一个生动活泼的、自主的和富有个性的过程。”行走在农村和城市之间,路不同,但是心是相同的。如何有效地教、如何轻松地学,这是当前高效减负的最核心话题。我们选择一箭多雕,那是数学教师成长的快车道;我们选择一箭多雕,那是培养有智慧的人的需要;我们选择一箭多雕,那是高质减负的真正举措。虽然这个任务艰巨,但先让我们学习第二类教师,做激发学生聪明才智的领路人吧!
(责编 蓝 天)
对这样的现象我迷惑不解,深深地思索:为什么“好教师”没有教出好学生呢?所谓的“懒教师”把精力放在哪里呢?经过观察发现:前者忙于找习题、批习题,很少对教学内容进行深入的钻研与分析,课堂教学只是直线型的你问我答式;而后者的课堂经常把很多的知识点融合在一起,让学生在不断的讨论与研究当中慢慢地领悟,尽管花了不少时间才揭示知识的本质,但经常会有惊人之举,学生学得津津有味!
此刻,我不由得想到教育家刘默耕说过的话:“教学一箭一雕不行,要一箭多雕才行,既要学生真枪实弹地干,又要让学生在真枪实弹中真正流汗。”第一类教师的教学是“一箭一雕”,学生直来直往,思维单一;第二类教师则是“一箭多雕”,学生在探究中虽然走了许多弯路,花费了许多精力,磕磕碰碰地到达目的地,但一路上把知识的“毛细血管”都触摸了一番。细细品味两类教师:第二类教师不仅让学生参与了获得知识的全过程,而且激发了学生学习的兴趣,学生从原来的“要我学”变成了“我要学”,提高了课堂教学效率。于是我想:平淡的、肤浅的学习是不可取的,数学学习更需要有助于学生学力的提高和终身发展的自主、探究活动。“一箭多雕”使数学教学变得更有张力和创造力,并给新课程下的数学教师带来了新的挑战。我们置身于高效减负的大背景下,如何在四十分钟内让学生学得轻松、学得扎实?我对此进行了初步的探索。
一、巧设精准的问点,拨动思维之弦
俗话说:“钱要化在刀口上,话要说在点子上。”这充分说明了“点”的特殊地位。课堂提问是融语言、感情于一体的信息交流,一箭多雕的提问可“拨动思维之弦”,所以教师要把握提问时机,讲究提问技巧。所谓“问点”,就是发问的支点,通过巧设这个支点可以轻而易举地触摸到数学的本质。
例如,一位教师教学六年级“稍复杂的应用题”一课的练习部分,设计了一道很有意义的题。如下:
小小理财家
意外仿佛是“一箭一雕”的附属品,如果教师心中没有对教材的深入理解和钻研,是很难会有惊喜产生的。在农村,学生的差异很大:家长文化素养比较高的,课堂不足课外延伸,课外辅导中有相当部分高于学生当前的水平,甚至超出课本和练习册内容;家长文化素质相对较低的,缺乏科学有效的家庭教育方法,对孩子“无法指导”。而课堂正是减少这种差异的最合适的地方。如上例中,正因为教师把握了知识的深层次内涵,使更多的农村学生同样有出采之处,所以捕捉意外的关键是教师的引导。培养学生的数学学习能力并非是一朝一夕的事,它需要经历逐级递进、日积月累、不断深化的过程,使学生在教师的引领下都有明显的进步,达到共同发展的目的。
三、雕琢渗透的艺术,激发学生的慧根
苏霍姆林斯基说过:“学生来到学校里不仅是为了取得一份知识的行囊,更主要的是为了变得更聪明。”数学的思想方法是解决各类问题的手段与保障,这些思想和方法不能硬生生地塞给学生,应该结合教学内容有机地进行渗透,让学生在不知不觉中感悟数学、理解数学。所以,教师必须不断地雕琢渗透的艺术,使之细腻、持久。
每每想起“真分数和假分数的认识”这节课,我心里总会产生一种兴奋。整节课没有华丽的课件,没有动人的图案,只依靠几张小纸片使思想与内容浑然一体。教学片断如下:
第(二)层次
……
师(已教学真分数,黑板上贴有表示3/4的长方形纸):4/4表示4个1/4,5/4呢?
生1:5/4表示5个1/4。
师:现在这张纸还能表示出5/4吗?你有什么好办法?
生2:再取一个1/4组合成。
师:请刚才涂1/4的同学都上台组成5/4。
学生作品展示:
师(再一格一格地涂):现在表示什么?(6/4、7/4、8/4)
师:谁和老师合作组成假分数?请其他同学说一说你是怎么想的?
生4:一个一个地加单位“1”。
师(出示下图):为什么分母还是8?
从表中得出:兔有5只,鸡有8-5=3(只)。
2.图示法
从图中得出:兔有5只,鸡有8-5=3(只)。
3.金鸡独立法
将所有的鸡抬起一只脚,所有的兔抬起两只脚,则脚有26÷2=13(只)。因为金鸡独立,此时鸡的头数和脚数相同,所以兔有13-8=5(只),鸡有3只。
这时我提问:“请你根据刚才的思路,说一说假设法的意义。”学生基本上都能根据罗列法和图示法顺利地说出过程。
我在教学罗列法过程中,还要求学生把所有的情况全列出来,这样可以为算法多样化做好铺垫。如:大、小卡车往城市运29吨蔬菜,大卡车每辆每次运5吨,小卡车每辆每次运3吨,大小卡车各用几辆能一次运完?学生必须罗列所有情况才能得出多种答案,很有现实意义。我想,这样的教学是彻底的、有效的。其实,数学问题的研究不可能是一帆风顺的,肯定会有杂乱无章的思维产生,这些表面松散的思维实际上都指向同一个方向。学生经历了假设法的形成过程,才会真正理解所学内容,将其内化为自己的知识。
《数学课程标准》指出:“数学学习应当是有意义的,富有挑战性的;学生的数学学习活动应当是一个生动活泼的、自主的和富有个性的过程。”行走在农村和城市之间,路不同,但是心是相同的。如何有效地教、如何轻松地学,这是当前高效减负的最核心话题。我们选择一箭多雕,那是数学教师成长的快车道;我们选择一箭多雕,那是培养有智慧的人的需要;我们选择一箭多雕,那是高质减负的真正举措。虽然这个任务艰巨,但先让我们学习第二类教师,做激发学生聪明才智的领路人吧!
(责编 蓝 天)