论文部分内容阅读
为了提高单一分类器的识别性能,在模式识别领域经常采用多分类器集成的方法。提出了一种基于GA的多分类器融合算法,首先通过GA算法对特征集的分割进行优化选择,形成了较优的成员分类器;然后通过对成员分类器分辨能力的度量,提出了一种加权系数矩阵的多分类器组合方法。在UCI数据库上进行了实验,结果表明所提出的算法具有较高的识别率。