【摘 要】
:
In CZTSSe solar cells,a simple sodium-incorporation post-treatment method toward solution-processed Cu2ZnSnS4 precursor films is presented in this work.An ultrathin NaCl film is deposited on Cu2ZnSnS4 precursor films by spin-coating NaCl solution.In subse
【机 构】
:
Key Laboratory for Renewable Energy(CAS), Beijing Key Laboratory for New Energy Materials and Device
论文部分内容阅读
In CZTSSe solar cells,a simple sodium-incorporation post-treatment method toward solution-processed Cu2ZnSnS4 precursor films is presented in this work.An ultrathin NaCl film is deposited on Cu2ZnSnS4 precursor films by spin-coating NaCl solution.In subsequent selenization process,the introduction of NaCl is found to be benefacial for the formation of Cu2-xSe,which can further facilitate the element transportation,leading to dense and smooth CZTSSe films with large grains and less impurity Cu2Sn(S,Se)3 phase.SIMS depth profiles confirm the gradient distribution of the sodium element in Na-doped absorbers.Photoluminescence spectra show that the introduction of appropriate sodium into the absorber can inhibit the band tail states.As high as 11.18% of power conversion efficiency (PCE) is achieved for the device treated with 5mg mL-1 NaCl solution,and an average efficiency of Na-doped devices is 10.71%,13% higher than that of the control groups (9.45%).Besides,the depletion width and the charge recombination lifetime can also have regular variation with sodium treatment.This work offers an easy modification method for high-quality Na-doped CZTSSe films and high-performance devices,in the meantime,it can also help to further understand the effects of sodium in CZTSSe solar cells.
其他文献
Exohedral van der Waals (vdW) hybrids comprising pristine carbon nanotubes (CNTs) and C60 fullerenes are expected to enable the engineering of carbonaceous materials with tunable physical and chemical properties due to the unperturbed sp2 hybridization of
Pursuit of energy-harvesting or-storage materials to realize outstanding electricity output from nature has been regarded as a promising strategy to resolve the energy-lack issue in the future.Among them,the solar cell as a solar-to-electrical conversion
The booming developments in portable and wearable electronics promote the design of flexible energy storage systems.Flexible supercapacitors and batteries as promising energy storage devices have attracted tremendous attention.As the key component of both
Formation of styrene carbonate (SC) by the cycloaddition of CO2 to styrene oxide (SO) catalysed by pyrrolidinopyridinium iodide (PPI) in combination with zinc halides (ZnCl2,ZnBr2 and Znl2) was investigated.Complete conversion of the SO to SC was achieved
Redox flow batteries (RFBs) have great potentials in the future applications of both large scale energy storage and powering the electrical vehicle.Critical challenges including low volumetric energy density,high cost and maintenance greatly impede the wi
MnOx-promoted Ni-based catalyst supported by ZnO was developed to selectively hydrogenate glucose into polyols in water at 523 K with a yield of 64.9%.Using glucose,sorbitol,glycerol and LA as the rawmaterials,the roles of nickel,ZnO and MnOx were investi
We report a nanocarbon material with nanodiamond (ND) core and graphene shell (ND@G) as a support for Pd nanocatalysts. The designed catalyst performed good selectivity of styrene (85.2%) at full conver-sion of phenylacetylene and superior stability under
For many two-dimensional (2D) materials,low coordination edges and corner sites offer greatly enhanced catalytic performance compared to basal sites,motivating the search for new synthetic approaches towards ultrathin and ultrafine 2D nanomaterials with h
Fabrication of novel electrode architectures with nanostructured ultrathin catalyst layers is an effective strategy to improve catalyst utilization and enhance mass transport for polymer electrolyte membrane fuel cells (PEMFCs).Herein,we report the design
In this work we synthesize a novel and highly efficient photocatalyst for degradation of methyl orange and rhodamine B.In addition,a new method for synthesis of Fe3O4@SiO2@TiO2@Ho magnetic core-shell nanoparticles with spherical morphology is proposed.The