论文部分内容阅读
核模糊C-均值聚类KFCM是利用核函数将数据映射到高维空间,通过计算数据点与聚类中心的隶属度对数据进行聚类的算法,拥有高效、快捷的特点而被广泛应用于各领域,然而KFCM算法存在对聚类中心的初始值敏感和不能自适应确定聚类数两个局限性。针对这两个问题,提出一种局部搜索自适应核模糊聚类方法,该方法引入核方法提高数据的可分性,并构造基于核函数的评价函数来确定最优的聚类数目和利用部分样本数据进行局部搜索以寻找初始聚类中心。人工数据和UCI数据集上的实验结果验证了该算法的有效性。