论文部分内容阅读
为了提高现有胰腺图像分割方法性能,提出一种超像素和U型全卷积网络(U-NET)结合的胰腺图像分割方法.首先,提出一种胰腺CT图像的超像素分割方法;然后,依据分割结果对图像进行映射降维得到腹部视觉概要图像,再将其与超像素位置信息作为U型全卷积网络的输入;最后,得到分割好的胰腺器官.在NIH胰腺公开数据集上的实验结果表明,文中方法将戴斯相似系数(DSC)提高到87.9%,高于目前已有的胰腺图像分割方法.并且其运算速度高于U-NET.