论文部分内容阅读
针对传统单结GaN基高电子迁移率晶体管器件性能受电流崩塌效应和自加热效应限制的困境,对新型A1GaN/GaN/InGaN/GaN双异质结高电子迁移率晶体管的直流性质展开了系统研究.采用基于热电子效应和自加热效应的流体动力模型,研究了器件在不同偏压下电流崩塌和负微分电导效应与GaN沟道层厚度的相关.研究发现具有高势垒双异质的沟道层能更好地将电子限制在沟道中,显著减小高电场下热电子从沟道层向GaN缓冲层的穿透能力.提高GaN沟道层厚度可以有效抑制电流崩塌和和负微分输出电导,进而提高器件在高场作用下的性能.所得结果为进一步优化双异质结高电子迁移率晶体管结构提供了新思路,可促进新型GaN高电子迁移率晶体管器件在高功率、高频和高温等无线通讯领域内的广泛应用.
Aiming at the predicament of the current collapse and self-heating effect of the conventional single-junction GaN-based high electron mobility transistor device, the direct current properties of the novel AlGaN / GaN / InGaN / GaN double heterojunction high electron mobility transistor Based on the hydrodynamic model based on hot electron effect and self - heating effect, the dependence of current collapse and negative differential conductance on the thickness of GaN channel layer under different bias voltages was investigated. It is found that the ditch with high potential barrier double heterogeneity The channel layer can better confine the electrons in the channel and significantly reduce the penetration of hot electrons from the channel layer to the GaN buffer layer under the high electric field.Improving the thickness of the GaN channel layer can effectively suppress the current collapse and the negative differential output Conductivity and thus improve the performance of the device under high field.The results provide a new idea for further optimizing the structure of double heterojunction high electron mobility transistor can promote the new GaN high electron mobility transistor devices in high power, High temperature and other wireless communications widely used in the field.