谈谈在初中数学教学中怎样渗透数学思想和数学方法

来源 :中学时代 | 被引量 : 0次 | 上传用户:hukuikui
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  【摘要】数学思想和方法是数学知识的精髓,又是知识转化为能力的桥梁。所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。提高学生的数学素质、指导学生学习数学方法,必须指导学生紧紧抓住掌握数学思想方法这一数学链条中最重要的一环。
  【关键词】渗透方法 训练方法 掌握方法 提炼方法
  数学思想和方法是数学知识的精髓,又是知识转化为能力的桥梁。目前初中阶段,主要数学思想方法有:数形结合思想、分类讨论思想、整体思想、化归思想、转化思想、归纳思想、类比思想、函数思想、辩证思想、方程与函数思想方法等。提高学生的数学素质、指导学生学习数学方法,必须指导学生紧紧抓住掌握数学思想方法这一数学链条中的最重要的一环。许多数学家和教育家历来强调对中学生的数学思想教育,其目的就是要提高学生的数学思维能力和数学素养。在初中数学教材中集中了大量的优秀例题和习题,它们所体现的数学知识和数学方法固然重要,但其蕴涵的数学思想却更显重要,作为一个执教者,要善于挖掘例题、习题的潜在功能。
  《数学课程标准》指出:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”。把数学思想、方法作为基础知识的重要组成部分,在《数学课程标准》中明确提出来,这不仅是课标体现义务教育性质的重要表现,也是对学生实施创新教育、培养创新思维的重要保证。
  所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。
  一、渗透“方法”,了解“思想”
  由于初中学生数学知识比较贫乏,抽象思维能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题的良性循环。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。
  二、训练“方法”,理解“思想”
  数学思想的内容是相当丰富的,方法也有难有易。因此,必须分层次地进行渗透和教学。这就需要教师全面地熟悉初中三个年级的教材,钻研教材,努力挖掘教材中进行数学思想、方法渗透的各种因素,对这些知识从思想方法的角度作认真分析,按照初中三个年级不同的年龄特征、知识掌握的程度、认知能力、理解能力和可接受性能力由浅入深,由易到难分层次地贯彻数学思想、方法的教學。如在教学同底数幂的乘法时,引导学生先研究底数、指数为具体数的同底数幂的运算方法和运算结果,从而归纳出一般方法,在得出用a表示底数,用m、n表示指数的一般法则以后,再要求学生应用一般法则来指导具体的运算。
  三、掌握“方法”,运用“思想”
  数学知识的学习要经过听讲、复习、做习题等才能掌握和巩固。数学思想、方法的形成同样有一个循序渐进的过程。只有经过反复训练才能使学生真正领会。另外,使学生形成自觉运用数学思想方法的意识,必须建立起学生自我的“数学思想方法系统”,这更需要一个反复训练、不断完善的过程。比如,运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握。学习一次函数的时候,我们可以用乘法公式类比;在学习二次函数有关性质时,我们可以和一元二次方程的根与系数性质类比。通过多次重复性的演示,使学生真正理解、掌握类比的数学方法。
  四、提炼“方法”,完善“思想”
  教学中要适时恰当地对数学方法给予提炼和概括,让学生有明确的印象。由于数学思想、方法分散在各个不同部分,而同一问题又可以用不同的数学思想、方法来解决。因此,教师的概括、分析是十分重要的。教师还要有意识地培养学生自我提炼、揣摩概括数学思想方法的能力,这样才能把数学思想、方法的教学落在实处。
  教学中那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略深层知识的真谛。因此数学思想的教学应与整个表层知识的讲授融为一体。只要我们执教者课前精心设计,课上精心组织,充分发挥学生的主体作用,多创设情境,多提供机会,坚持不懈,就能达到我们的教书育人目标。
其他文献
《透镜及其应用》这章要求学生掌握的知识点主要有:凸透镜、凹透镜以及它们的焦点和焦距,透镜对光的作用及作图,幻灯机、照相机、放大镜,实像和虚像,探究凸透镜成像的规律、规律的理解和应用,眼睛如何看物体,近视眼及其矫正,远视眼及其矫正,显微镜等.知识结构图(概念后括号内数字为该知识在77份2008年中考试卷中出现的次数)如下页图所示.  通过分析中考试卷可知:本章内容的考查主要是选择、填空和实验题.近视
【摘要】我国的教育正在由“应试教育”向“素质教育”转型,这给农村教育建设提出了新的难题,即如何培养全面高素质的社会人才成为了农村教育的一项重要任务,给广大农村教师安排了一个重大考验。作为历史这一学科,在教学中实施素质教育,需要依次做到以下方面:提高教师素质、优化教学内容;转变传统教学观念、注重学生的主体地位、培养学生自主学习意识;关注农村留守学生成长,采取多种途径培养学生的能力。  【关键词】农村