论文部分内容阅读
AdaBoost集成学习方法中,分类器一经学习成功,其投票权值就已确定,同一分类器对所有待测样本均有相同的投票权值。对于难于分类样本,具有良好分类性能的少数分类器权值却较低。提出适用于集成学习方法的权重自适应调整多分类器集成算法。根据多分类器行为信息,产生待测样本局部分类精度的有效判定区域,基于有效判定区域选择不同的分类器组合,并调整其相应权重,利用样本集上的统计信息来动态指导分类集成判决。实验结果表明,该算法提高了集成分类性能。