电网安全风险闭环管控体系构建方法设计

来源 :电力系统保护与控制 | 被引量 : 0次 | 上传用户:w354026268
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着电网建设的高速发展,电网事故的影响也在逐渐扩大,电网安全引起了越来越高的重视.电网结构的多重削弱更是高风险场景之一,容易引发大面积停电事故.因此,构建电网安全风险闭环管控体系对电网稳定运行至关重要.以恩施电网7次重大、较大电网安全风险事件为实例,分析了各次电网安全风险事件发生的起因及防范方法.在归纳总结各类风险防范措施特点及实施效果的基础上,基于Pareto最优演绎构建了一种应对高风险场景的电网安全风险多闭环管控体系,对风险评估和协同防控环节实施多重闭环反馈和优化,达到规避、降低电网事故风险的目标.最后通过黄冈中、南部电网实际算例,验证了所提电网安全风险闭环管控体系的有效性.
其他文献
差动保护常作为变电站中大型变压器的主保护,在10 kV配电变压器上应用案例较少.介绍了一起10 kV配电室中2500 kVA大容量配电变压器的接地故障起火案例,分析了故障原因.利用仿真软件,对可能出现的低压侧短路故障进行仿真,探讨了不同情况下的中低压保护动作情况.结合故障分析,对该案例中10 kV配电变压器差动保护配置的必要性进行研究,结果显示配变差动保护可有效解决中低压保护整定配合定值与时延级差难以配合的问题,可灵敏监测低压侧接地故障下的保护“盲区”数据.针对性地设计了中低压二次系统改造方案,以差动保护
针对传统电力通信网络路由效率低、成本开销大等缺点,在软件定义网络的基础上,提出了一种基于改进蚁群算法的电力通信网络QoS路由策略.建立了以时延、路径数和抖动等为约束条件的路由模型,并使用改进的蚁群算法进行路径选择.通过仿真和传统路由策略进行端到端延迟、丢包率和链路利用率等性能比较.结果表明,相比于传统策略,该策略的负载分布更加均匀,在端到端的时延、丢包率、链路利用率等性能上都有明显提高,具有一定的实用性.
当前的光伏最大功率点追踪技术存在以下不足:在局部阴影工况下,易陷入局部功率峰值;在负载波动时,系统容易出现振荡甚至失稳.针对上述问题,提出一种自适应的光伏全局最大功率点追踪设计方案.该方案将光伏输出端电压-功率扫描电路与Zeta斩波电路有机结合,通过单开关管的简单电路拓扑,既可实现光伏输出端电压-功率特性快速扫描,定位全局最大功率点位置,又能根据后级电路需要,实现升降压斩波直流调节.在光照等输入或负载发生突变后,所述系统均能进行开关管占空比自适应调整,确保稳定工作在全局最大功率点附近,避免出现大幅振荡与失
高压直流输电传输线分布电容电流会造成电流差动保护无法立即区分区内外故障,为避免保护误动作需要增加保护时间延迟和阈值,大大降低了电流差动保护的动作速度和灵敏性.为了使电流差动保护不受传输线分布电容电流影响,在基于传输线分布参数模型上考虑了正负极线路耦合特性,提出了适用于高压直流输电线路的模态电流差动保护算法.该算法以共模补偿电流作为故障识别依据,以差模补偿电流作为故障选极依据.该模态电流差动保护算法在故障期间可以进行故障选区和故障判极,且灵敏度高、动作速度快.最后通过PSCAD/EMTDC仿真验证了该保护方