论文部分内容阅读
针对现有基于节点相似性的链接预测方法忽略了网络拓扑本身链接强度的信息,带权的拓扑路径方法中权值较难确定等缺陷,提出一种基于链接重要性和数据场的链接预测算法。首先,将所有链接边赋予不同的链接权重;其次,考虑潜在链接节点间的相互影响,对部分没有链接的节点进行链接预估计;最后,利用数据场势函数计算两节点间的相似值。在典型的网络数据进行的实验结果表明,所提方法在分类指标和推荐指标中都有很好的表现:以AUC为评价指标时,比同复杂度的局部路径(LP)算法提高了3到6个百分点;以DCG为评价指标时比LP算法提高了1.5