论文部分内容阅读
本文对簿壁铁氧体环形磁心在各种驱动和负载情况下的外端特性进行了分析。这种分析只有在下述两个由实验证实了的条件下才能成立:1)在无负载时磁通完全翻转所需要的时间与超过临界磁场(磁通开始变化所需要的磁场)的阶跃驻动磁场大小成反比;2)由阶跃驱动电流产生的输出开路电压波形当对应于幅度和时间标准化后都是一样的。利用标准化的输出电压 f′(x)可建立一个外端特性方程式。f′(x)可由非理想阶跃曲输入电流得到。利用修正的高斯方程式来表示 f′(x),再加上四个参数即可预知对应任意输入波形的磁心响应。由对应阶跃驱动 NI 的电压响应和 f(x)(标准化开路电压f′(x)的积分,它正比于磁心中的翻转磁通)可很容易地得到这四个参数。利用方程式可计算有负载的线路并检验所建立的公式的效果。对一个带有串联的 RL和 RLC 负载的磁心线路在线性上升和阶跃两种驱动电流下的理论和实验结果进行了比较,虽然所用的磁心壁不特别薄,但结果的一致性相当好。
In this paper, the outer end characteristics of the toroidal ferrite cores under various driving and loading conditions are analyzed. This analysis is valid only under the following two experimentally verified conditions: 1) the time required for complete flux reversal without load, and the step-in time exceeding the critical field (the magnetic field required for the flux to begin to change) The magnitude of the moving magnetic field is inversely proportional; 2) The output open-circuit voltage waveform generated by the step-driven current is the same after normalizing to the amplitude and time. Using the normalized output voltage f ’(x), an equation for the external characteristic can be established. f ’(x) can be obtained by inputting a non-ideal step current. The modified Gaussian equation is used to represent f ’(x), plus four parameters to predict the core response for any input waveform. The four parameters are easily derived from the voltage response of the corresponding step-driven NI and f (x), the integral of the normalized open circuit voltage f (x), which is proportional to the flip flux in the core. Use equations to calculate the load line and verify the effect of the established formula. The theoretical and experimental results of a core-line with a series of RL and RLC loads linearly rising and stepping are compared for both drive currents. Although the core walls used are not particularly thin, the consistency of the results is quite good.