论文部分内容阅读
近年来,在数据流中进行高效用项集挖掘成为一个重要的研究课题。已存在的算法在挖掘过程中产生大量的候选项集,使用户很难从大量候选模式中筛选出有用的信息。针对这种情况,提出一个数据流高效用项集挖掘算法HUIDE(High-Utility Itemsets Over Data Streams)。算法首先综合考虑数据的信息特征,提出一种有效的效用度量方法。然后采用基于时间的滑动窗口技术更加准确地描述数据分布,构建一种树结构HUI-tree(High Utility Itemsets tree)。最后遍历构建的