论文部分内容阅读
针对粒子滤波算法中粒子退化现象及重采样所带来的粒子贫化问题,提出一种基于人工鱼群的无轨迹粒子滤波算法。采用无轨迹变换选取优化的重要性密度函数,将人工鱼群的智能思想引入到粒子滤波中代替重采样过程,通过觅食、聚群和追尾行为找到全局最优位置,驱动粒子向最优点靠近,从而增加粒子多样性。仿真结果表明,与传统的无轨迹粒子滤波和常规粒子滤波相比,该算法在估计精度上有显著的提高。