论文部分内容阅读
We study a self-seeded high-gain harmonic generation(HGHG) free-electron laser(FEL) scheme to extend the wavelength of a soft X-ray FEL. This scheme uses a regular self-seeding monochromator to generate a seed laser at the wavelength of 1.52 nm, followed by a HGHG configuration to produce coherent, narrow-bandwidth harmonic radiations at the GW level. The 2nd and 3rd harmonic radiation is investigated with start-to-end simulations.Detailed studies of the FEL performance and shot-to-shot fluctuations are presented.
We study a self-seeded high-gain harmonic generation (HGHG) free-electron laser (FEL) scheme to extend the wavelength of a soft X-ray FEL. This scheme uses a regular self-seeding monochromator to generate a seed laser at the wavelength of 1.52 nm, followed by a HGHG configuration to produce coherent, narrow-bandwidth harmonic radiations at the GW level. The 2nd and 3rd harmonic radiation is investigated with start-to-end simulations. Dedailed studies of the FEL performance and shot-to -shot fluctuations are presented.