论文部分内容阅读
邮件过滤中有两个关键问题,一是如何选择有效的邮件特征集,二是设计较好的邮件过滤算法。在对邮件特性进行分析的基础上,综合邮件头及邮件内容的主要形象特征给出了一种新的邮件特征集提取方法。用粗糙集的信息观点度量了各属性的重要性,并以此为权重进行加权朴素贝叶斯垃圾邮件过滤,有效地解决了朴素贝叶斯分类中的条件依赖性问题。通过在中英文邮件集上的测试实验,证明了所提出的邮件过滤方法的有效性。