Texture image classification with discriminative neural networks

来源 :Computational Visual Media | 被引量 : 0次 | 上传用户:hasfyturnip
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Texture provides an important cue for many computer vision applications, and texture image classification has been an active research area over the past years. Recently, deep learning techniques using convolutional neural networks(CNN) have emerged as the state-of-the-art: CNN-based features provide a significant performance improvement over previous handcrafted features. In this study, we demonstrate that we can further improve the discriminative power of CNN-based features and achieve more accurate classification of texture images. In particular, we have designed a discriminative neural network-based feature transformation(NFT) method, with which the CNN-based features are transformed to lower dimensionality descriptors based on an ensemble of neural networks optimized for the classification objective. For evaluation, we used three standard benchmark datasets(KTH-TIPS2, FMD, and DTD)for texture image classification. Our experimental results show enhanced classification performance over the state-of-the-art. Texture provides an important cue for many computer vision applications, and texture image classification has been an active research area over the past years. Recently, deep learning techniques using convolutional neural networks (CNN) have emerged as the state-of-the-art: In this study, we demonstrate that we can further improve the discriminative power of CNN-based features and achieve more accurate classification of texture images. In particular, we have designed a discriminative neural network-based feature transformation (NFT) method, with which the CNN-based features are transformed to lower dimensionality descriptors based on an ensemble of neural networks optimized for the classification objective. For evaluation, we used three standard benchmark datasets (KTH-TIPS2 , FMD, and DTD) for texture image classification. Our experimental results show enhanced classification performance ov er the state-of-the-art.
其他文献
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
一支由华人和法国科学家组成的研究队伍,在猴子身上进行实验后,有望发明一种崭新的抑制艾滋病毒方法,使人类有可能不必使用“鸡尾酒”抗艾滋病毒药物就可抑制艾滋病毒。相关
针对某矿1252(1)工作面轨顺底板巷需承受近距离工作面强动压影响的问题,在现场调研的基础上,结合巷道原有支护形式及不同区段受动压影响程度不同的特点,采用套棚修复和锚索补
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
This paper proposes a modification of the filtered importance sampling method, and improves the quality of virtual spherical Gaussian light(VSGL)-based real-tim
使用不同浓度的赤霉素(GA)溶液对同一块实验茶园不同方样的茶树进行喷洒,以探讨赤霉素的使用对茶树新芽的影响。结果表明:不同浓度的赤霉素对茶树发芽率、百芽重以及茶叶品质
基于数据层的统计数据融合方法,以提高遥感图象的分类性能为目的,实现了一种新的可调参数的图象分类方法.用这种方法对TM图象和SAR图象进行了一系列的实验,并对实验的结果进
Sparse representation is a significant method to perform image classification for face recognition. Sparsity of the image representation is the key factor for r
徒法不足以自行,审判的魅力集中展现在审判的技术的运用上,宋朝是中国封建法律全面发展的时期,宋代商品经济的迅猛发展,“好讼”之风盛行,致使案情复杂且数量剧增,这无疑挑战
在一块贫瘠而偏僻的土地上却孕育了中国现代革命史上一个伟大的历史时期,即延安时期。在这一时期,中国文艺事业的发展熠熠生辉、璀璨夺目。延安戏剧文化作为延安文艺事业的一