论文部分内容阅读
为解决尺度、视角、光照变化较大及存在噪声和模糊变化情况下的图像拼接问题,提出了一种具有较强鲁棒性的图像拼接方法。首先,根据Harris算法和SIFT算法各自的特点,提出了一种自适应的Harris-SIFT特征点提取方法,利用最邻近法完成图像间的特征点粗匹配;然后,应用随机抽样一致性(Random Sample Consensus,RANSAC)算法对粗匹配的特征点进行筛选,同时估计出透视变换模型的变换矩阵,并对相邻的两帧图像进行配准;最后,利用加权平均融合算法消除图像拼接处的缝合线,实现图像的高质量