论文部分内容阅读
降低编程电压 ,同时仍保持十年的数据记忆时间 ,一直是多晶硅 氮化硅 氧化硅 硅(SONOS)研究人员面临的一个巨大挑战。本文介绍SONOS可自持存储器器件设计和降低编程电压方面的进展。硅 氧化硅界面态的退化损害SONOS自持半导体存储器记忆时间的长期可靠性。首次应用在SONOS器件制作工艺上的双步高温氘退火技术 ,与传统的氢退火相比 ,显著提高了器件的耐久性能和记忆时间可靠性。我们研制成功 - 9伏 / + 10伏 (1毫秒 )可编程SONOS存储器 ,在摄氏 85度 ,一千万个擦除 /写入操作后 ,仍能确保十年的记忆时间。本文介绍编程电压降低方面的设计考虑 ,制作工艺的优化 ,描述实验过程和SONOS器件的测试 ,以及用于SONOS自持存储器动态性能测试的基于可编程门阵列的测量系统。
Lowering the programming voltage while still maintaining a decade of data retention has been a huge challenge for researchers in polysilicon silicon oxynitride silicon (SONOS). This article describes SONOS self-sustaining memory device design and progress in programming voltage reduction. Degradation of the silicon oxide interface state compromises the long-term reliability of SONOS self-sustaining semiconductor memory time. For the first time, the dual-step high-temperature deuterium annealing technology used in SONOS device manufacturing process significantly improves the device’s durability and memory time reliability compared with the conventional hydrogen annealing. We have successfully developed - 9 volt / + 10 volt (1 ms) programmable SONOS memory that retains ten years of memory at 85 degrees Celsius and 10 million erase / write operations. This article presents design considerations for programming voltage reduction, fabrication process optimization, testing describing the lab process and SONOS devices, and a programmable gate array based measurement system for SONOS self-sustaining memory dynamic performance testing.