论文部分内容阅读
针对准循环低密度奇偶校验(QC-LDPC)码中准循环基矩阵移位系数构造的确定问题,利用循环差集(CDF)构造一种近似双对角结构的(3,L)规则QC-LDPC码,其围长至少为8,该码的基矩阵由四部分构成,其中一部分数据已知,其余可由简单的运算获得,所需存储空间少,降低了硬件实现的复杂度,根据循环差集个数t不同可灵活构造不同码长和码率的码字.仿真实验结果表明:当误码率为1×10~(-6),码率为0.5时,构造的基于循环差集的码比基于最大公约数(GCD)码、渐进边增长(PEG)码和西顿(SD)序列构造码的净编码增益分别提升了0.10,0.12和0.13dB.当码率为0.6时,比基于完备循环差集构造的type2码和PEG构造码的净编码增益分别有0.20和0.10dB的提升.
In order to solve the problem of determining the displacement coefficient of quasi-cyclic matrix in quasi-cyclic low-density parity-check (QC-LDPC) codes, a (3, L) rule QC with approximate double diagonal structure - LDPC code, the circumference of at least 8, the matrix code consists of four parts, some of which are known data, the rest can be obtained by a simple operation, less storage space required, reducing the complexity of the hardware implementation, according to the cycle Different numbers of differential sets t can flexibly construct codewords with different code length and code rate.The simulation results show that when the bit error rate is 1 × 10 -6 and the code rate is 0.5, (GCD) codes increase 0.10, 0.12 and 0.13 dB respectively for the coding gain of the progressive edge-grow (PEG) code and the Sidon (SD) sequence code. When the code rate is 0.6, the ratio The net coding gain of type2 codes and PEG configuration codes constructed based on complete cyclic difference sets have a gain of 0.20 and 0.10 dB, respectively.