论文部分内容阅读
微表情表现强度微弱且非常短暂。针对微表情识别效果不理想的问题,以视觉几何组(Visual Geometry Group,VGG)网络为基础,提出卷积神经网络(Convolutionnal Neural Network,CNN)与长短期记忆网络(Long Short-Term Memory,LSTM)结合的识别算法。CNN提取数据集CASME Ⅱ的空域特征,LSTM处理时域特征,实现空域与时域特征的结合。针对深度学习训练困难以及过拟合问题,加入批量归一化算法与丢弃法,提高网络训练速度,有效防止过拟合。