论文部分内容阅读
以池塘养殖水体常规水质指标作为训练样本,在分析传统水质预测模型的基础上,构建神经网络水质预测模型。运用改进的BP算法对在线监测的水质指标进行分析、分类和预测,确定水质指标与其影响因子间的非线性关系,研究养殖水体水质指数变化梯度和分布规律,同时对水质状况进行模糊判别,为养殖生产提供预警控制,并对不同情况下的输出结果做出了比较。结果表明:该网络具有较好的泛化能力,预测平均误差在3%以内,实现了水质指标的准确预测和判别,收敛速度快,具有较好的实用性和较高的预测精度,基本满足环境管理的需要。