论文部分内容阅读
从一个新的角度结合具体的算法讲述了Kalman滤波器的原理,并对噪声为非高斯情况下结合熵的理论提出了假设,解决了噪声为非高斯情形下的滤波器设计的瓶颈。传统的Kalman滤波器是在噪声为高斯的情形下得出的最优滤波估计,但是现实生活中大多数噪声却是未知的、不确定性并且非高斯的。为了清楚说明熵原理应用于非高斯滤波器的设计结果,运用了数学统计的方法,对比滤波效果,说明了其可行性,证明了这种方法更适应于对噪声情况未知、参数不明确的情况,为研究广义噪声的随机系统提出了一种新的通用的解决途径。