论文部分内容阅读
细粒度图像分类是对某一类别下的图像子类进行精确划分.细粒度图像分类以其特征相似、姿态各异、背景干扰等特点,一直是计算机视觉和模式识别领域的研究热点和难点,具有重要的研究价值.细粒度图像分类的关键在于如何实现对图像判别性区域的精确提取,已有的基于神经网络算法在精细特征提取方面仍有不足.为解决这一问题,本文提出了一种多尺度反复注意力机制下的细粒度图像分类算法.考虑到高、低层级的特征分别具有丰富的语义、纹理信息,分别将注意力机制嵌入到不同尺度当中,以获取更加丰富的特征信息.此外,对输入特征图先后采取通道和