论文部分内容阅读
针对一般多输入多输出不确定系统,提出一种基于鲁棒时变卡尔曼滤波的估计算法.该方法将时变卡尔曼滤波与自适应神经网络相结合,利用白适应神经网络克服外界非线性不确定因素,采用两个误差信号对其进行训练以提高估计精度,并对估计误差有界性进行证明。将该方法用于无人机视觉编队视线信息的状态估计,仿真结果表明该算法能够很好地估计不确定机动长机的加速度,实现了僚机对长机的有效跟踪.