论文部分内容阅读
针对指纹定位方法中单一指纹信息特征有限,以及在提升定位精度时,因增大指纹库造成指纹匹配复杂度增加,导致定位效率不高等问题,提出一种改进的动态差分优化网络的室内分级定位方法:离线阶段,在无线保真(WiFi)指纹中引入三轴地磁强度特征,增加定位区域的局部特征信息,并将指纹样本通过k均值聚类算法(k-means)进行聚类切分,形成区域指纹库,各区域指纹库分别利用改进的动态差分优化埃尔曼神经网络(IDDE-ENN)模型,训练得到每个区域的精细定位模型;在线定位阶段,根据用户的定位数据与区域指纹库的聚类中心匹