论文部分内容阅读
针对传统控制算法对并联机器人轨迹跟踪精度控制效果不好的问题,提出了一种并联机器人的改进粒子群优化神经网络自适应控制算法,首先对粒子群优化算法进行惯性权重的优化和变异操作的改进,然后用改进的PSO算法优化神经网络的初始权值并进行在线调节PID参数。最后以六自由度并联机器人为研究对象,将传统PID控制与基于改进PSO优化的神经网络自适应控制算法分别进行了仿真实验。仿真结果表明,在快速性和稳定性能上,基于改进PSO优化的神经网络自适应控制算法比单纯的PID控制更加优越,在一定程度上减小了轨迹输出的误差并且提高了