论文部分内容阅读
Microspheres with thermo-responsible surface were fabricated by PCL-b-PEO-b-PNIPAM triblock copolymers. Thermo-responsible morphological changes of PCL-b-PEO-b-PNIPAM microspheres immersed in aqueous solution at temperatures above the LCST(e.g. 37 ?C) were observed from porous surface structure to compact surface layer. Enzymatic degradation and in vitro drug release results showed that the thermo-responsible surface layer greatly influenced the degradation of microspheres as well as the drug release behavior from microspheres. With the copolymerization of PNIPAM block into PCL-b-PEO copolymers, the drug release could be well regulated by changing temperatures and microspheres composition, which revealed the great potentials of microspheres with thermo-responsible surface for controlled drug release.
Microspheres with thermo-responsible surface were fabricated by PCL-b-PEO-b-PNIPAM triblock copolymers. Thermo-responsible morphological changes of PCL-b-PEO-b- PNIPAM microspheres immersed in aqueous solution at temperatures above the LCST C) were observed from porous surface structure to compact surface layer. Enzymatic degradation and in vitro drug release results showed that the thermo-responsible surface layer greatly influenced the degradation of microspheres as well as the drug release behavior from microspheres. With the copolymerization of PNIPAM block into PCL-b-PEO copolymers, the drug release could be well regulated by changing temperatures and microspheres composition, which revealed the great potentials of microspheres with thermo-responsible surface for controlled drug release.