论文部分内容阅读
基于灰色理论和灰色神经网络组合预测模型,对水文时间序列进行数据挖掘。对原始序列首先进行了对数一方根变换,使得数据序列满足灰色理论的覆盖条件,采用灰色预测模型GM(1,1),对数据序列进行预测,由于灰色预测属于线性预测,因此将灰色预测模型与神经网络模型相结合,提高了预测精度。以都江堰岷江来水数据为原始数据进行实际预测,实验证明,这种组合模型的预测效果优于传统预测模型。