论文部分内容阅读
为了开发对科研实验数据的非线性关系精确建模工具,该文讨论了将遗传算法GA和神经网络算法结合,并使用Matlab软件实现计算过程。针对一个非线性测试函数逼近问题,设计了Matlab软件的GA算法的实现过程,并实验测试分析了GADS工具箱算子选择和参数设置。比较了单纯GA方法和GA结合Levenberg-Marquardt BP方法局部寻优的效果。结果表明实验中设计的基于Matlab的GA神经网络计算方案是一种有效的高精度模型,算法设计实现过程有指导意义,能为各领域提供有力复杂非线性建模工具。