用于联盟链的非拜占庭容错共识算法

来源 :计算机科学 | 被引量 : 0次 | 上传用户:yixinnet
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着区块链技术的发展,区块链出现了多种分类,兼顾公有链多中心特点和私有链高性能优势的联盟链成为了我国区块链的发展重心。结合联盟链中存在节点信任的特性,非拜占庭容错共识算法能为联盟链提供更好的性能支持。文中选取Raft共识算法作为研究对象,针对Raft共识算法中Leader节点选举和日志复制过程中的诸多问题,提出了一种可应用于联盟链的非拜占庭容错共识算法——KRaft(Kademlia-Raft)共识算法,该共识算法结合区块链网络层的双层Kademlia路由协议改进了Raft共识算法中的Leader节点选举
其他文献
针对传统逆强化学习算法在缺少足够专家演示样本以及状态转移概率未知的情况下,求解奖赏函数速度慢、精度低甚至无法求解的问题,提出一种基于相对熵的元逆强化学习方法。利用元学习方法,结合与目标任务同分布的一组元训练集,构建目标任务学习先验,在无模型强化学习问题中,采用相对熵概率模型对奖赏函数进行建模,并结合所构建的先验,实现利用目标任务少量样本快速求解目标任务奖赏函数的目的。将所提算法与REIRL算法应用于经典的Gridworld和Object World问题,实验表明,在目标任务缺少足够数目的专家演示样本和状态
针对音频文件可逆信息隐藏算法嵌入容量小、安全性不高的问题,文中提出了一种基于码分复用(Code Division Multiplexing,CDM)的音频文件大容量可逆信息隐藏(Reversible Data
局部社区发现算法通常选取种子节点进行社区发现,针对现有重叠社区发现算法中种子节点选取时有效性不足的问题,提出了一种基于子图结构的局部社区发现算法(Subgragh Structure Based Overlapping Community Detection,SUSBOCD)。该算法提出了一种新的节点重要性度量指标,不仅考虑了节点的邻居数量,同时也考虑了邻居间的链接紧密程度。首先,选取未被访问且重要性最大的节点以及与其最为相似的邻居节点,将该两个节点及其公共邻居节点合并形成一个初始种子子图,该过程迭代运行
IT和OT的融合模糊了工业控制系统“网络边界”的概念,细粒度的访问控制策略是保障工业企业网络安全的基石。基于角色委派的访问控制机制可把域中用户对网络资源的访问权限委派给其他域的用户或企业合作伙伴,这样为企业员工或企业合作伙伴远程访问企业网络资源提供了便利。然而,这种便利可能增加工业控制系统的攻击面。区块链技术固有的去中心化、防篡改、可审计等特征可以成为基于角色委派访问控制管理的基础架构,因而提出了基于区块链技术的角色委派访问控制方案(Delegatable Role-Based Access Contro
在科技发展过程中,计算机技术在各个行业中的应用越来越广泛,为人们的工作和生活带来非常多的便利。近年来,人们开始在计算机技术基础上进行创新,计算机视觉技术为各个行业提供了有利的技术支持,促进各行各业的自动化的应用。本文主要结合计算机视觉技术的概念,分析了计算机视觉技术的重要性,探索了计算机视觉技术在自动化中的有效应用。
传统区块链交易中,隐私保护都是在匿名机制下加密用户的敏感信息,引入公正的第三方对交易明文信息进行验证,然而一旦第三方受到攻击,用户的交易信息便会被泄露,且在理性状态下不存在真正公正的第三方。为了能够更好地解决区块链交易中存在的隐私问题,针对交易者非匿名状态下的交易金额保密验证问题,采用PVC数字承诺协议,将交易金额隐藏在承诺中,并构造公开可验证的零知识证明方案,使验证者能在不获取交易敏感信息的情况下对交易的合法性进行保密验证。同时,利用椭圆曲线同态加密特性加密金额,进而解决交易者密文账本的更新问题。对所提
为了解决共享电子病历的隐私性及数据完整性问题,在平行区块链架构的基础上,文中提出了一种基于红黑树的共享电子病历数据完整性验证方案。首先,医患完整性验证信息以不同的属性基加密的方式分别存储在患者链和医生链上,而医患数据具体信息存储在云服务提供商CSP的链下服务器上;其次,构造基于红黑树的数据完整性验证方案及动态数据更新方案。安全性分析表明,所提方案不但具有公开可验证性,能有效抵抗云服务器的伪造攻击,而且能保障用户及患者信息的隐私性,具有较高的完整性验证效率及数据更新效率。
入侵检测在计算机网络安全防御中起着至关重要的作用,是网络安全的关键技术之一。随着网络环境越来越复杂,网络入侵行为也逐渐表现出了多样化及智能化的特点,且越来越难以被检测到。基于上述原因,人们对已有入侵检测方法的可行性与可持续性表示担忧,具体来说就是已有的入侵检测算法很难完美地抽象出入侵行为所包含的特征,且已有的入侵检测方法在未知攻击上大都表现不佳。针对这些问题,文中提出了基于降噪自编码器和三支决策的入侵检测算法DAE-3WD。该方法通过降噪自编码器对高维数据进行特征提取,利用多次的特征提取来构造多粒度的特征
随着射频识别(Radio Frequency Identification, RFID)技术的飞速发展,在各种特殊的环境下(如工厂、仓库、监狱等),对RFID阅读器天线优化部署的需求开始受到广泛关注。针对目前RFID阅读器天线部署中存在的部署难度大、约束条件多且不易找到最优解和Pareto前沿等问题,文中提出了一种基于改进型多目标樽海鞘群算法(Multi-objective Salp Swarm
在生物信息学领域,人工智能方法在预测药物分子的物理化学性质和生物活性中获得了重大成功,特别是神经网络已被广泛应用到药物研发中。但是浅层神经网络的预测精度低,深度神经网络又容易出现过拟合的问题,而模型融合策略有望提升机器学习中弱学习器的预测能力。据此,文中将模型融合方法首次应用到药物分子性质的预测中,通过对药物分子的化学结构进行信息化编码,采用平均法、堆叠法融合浅层神经网络,提高对药物分子pKa预测的能力。与深度学习方法相比,堆叠法(Stacking)融合的模型具有更高的预测准确性,其预测结果的相关系数达到