论文部分内容阅读
Sediment cores were collected from the subaqueous delta of the Changjiang Estuary. Sediment grain-size profiles and their fractal dimensions were analyzed, to elucidate responses to long-term sedimentary processes. In addition, the environmental sensitive populations of grain size have been extracted. The sediment cores can be divided into two parts, according to the sedimentary structures present. The upper part (0-12 cm) is interpreted as being the active layer, which is influenced frequently by changes in the short-term hydrodynamic environment. The lower part extends from a depth of 12 cm, to the bottom of the core. The pattern of fluctuation is linked to sediment grain size. Moreover, two grain-size sensitive populations can be identified. The fine sensitive population is 6.0-7.2 μm, which is a similar grain size to the suspended sediment from up-river. The coarse sensitive population varies from 40.7 to 57.5 μm, revealing complex changes. Thus, the riverine inputs from the Changjiang River may be an important source, which contributes to seasonal fluctuations of grain-size distribution, over the area. The sediments, with grain-sizes ranging from 0.9 to 20.3 μm, are characterised by self-similar in the fractal non-scale region. The fractal dimension is consistant with the grain-size parameter varatioins, which could be used as a replacement index to reveal and reconstruct the sedimentary environmental evolution.
Sediment cores were collected from the subaqueous delta of the Changjiang Estuary. Sediment grain-size profiles and their fractal dimensions were analyzed, to elucidate responses to long-term sedimentary processes. sediment cores can be divided into two parts, according to the sedimentary structures present. The upper part (0-12 cm) is interpreted as being the active layer, which is influenced frequently by changes in the short-term hydrodynamic environment. The lower part The pattern of fluctuation is linked to sediment grain size. The fine sensitive population can be identified. The fine sensitive population is 6.0-7.2 μm, which is a similar grain size to the suspended sediment from up-river. The coarse sensitive population varies from 40.7 to 57.5 μm, revealing complex changes. Thus, the riverine inputs from the Chan gjiang River may be an important source, which contributes to seasonal fluctuations of grain-size distribution, over the area. The sediments, with grain-sizes ranging from 0.9 to 20.3 μm, are characterised by self-similar in the fractal non-scale region The fractal dimension is consistant with the grain-size parameter varatioins, which could be used as a replacement index to reveal and reconstruct the sedimentary environmental evolution.