论文部分内容阅读
为提高风电功率超短期多步预测精度,针对梯度修正学习算法采用随机初始化网络参数训练自适应小波神经网络(AWNN)易陷入局部最优的缺点,将粒子群(PSO)算法和差分进化(DE)算法相结合,提出利用IPSO-DE算法优化AWNN的初始化网络参数,得到改进AWNN模型(IAWNN)并将其用于风电功率超短期多步预测.仿真结果表明:IPSO-DE算法优化AWNN初始化网络参数的性能优于IPSO算法、DE算法和梯度修正学习算法,所提改进模型的多步预测性能优于AWNN模型、持续法(PM)模型和BP神经网络(BPNN)模型.