基于改进GRC和集成技术的混合数据聚类算法

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:melaniezhao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在分析现有混合属性数据聚类算法存在问题的基础上,选用基于图论的松弛聚类算法作为解决问题的“基石”;引入基于“Local Scale”思想的高斯核参数计算步骤,对基于图论的松弛聚类算法进行了自适应改进,并对其点对距离计算过程进行了面向混合属性的度量扩展。在上述两步改进的基础上,结合聚类集成技术,提出了一种新的混合属性数据聚类算法,并进行了实例验证,结果表明提出的算法具有较强的参数鲁棒性和较高的聚类精度。
其他文献
为解决经典关联规则生成算法挖掘效率低及形成规则冗余性大的问题,提出在FP-tree基础上直接生成频繁概念格并提取无冗余关联规则的算法。其建格过程根据FP-tree频繁项目头表
给出了论域U上自反的区间值模糊关系R的传递化表示爱的概念,研究了R与R~诱导的拓扑结构τ_R和τ_R~。研究结果表明τ_R和τ_R~有一组相同的子基,因此τ_R=τ_R~。