论文部分内容阅读
人上皮细胞(HEp-2)检测抗核抗体是诊断自身免疫性疾病的常用方法,HEp-2细胞图像识别对许多自身免疫性疾病的诊疗具有重要意义。针对目前主要采用手工评估方法造成效率低效、劳动强度高等问题,提出一种基于深度残差收缩网络的HEp-2细胞图像分类模型。该模型在深度残差网络基础上进行改进,残差学习模块使用恒等映射方法可以训练更深层次的网络。在每个残差学习模块内部嵌入一个软阈值非线性变换子网络,软阈值用以消除数据中的噪声和冗余信息,这些阈值通过子网络自动学习。实验表明,该方法具有良好的性能,优于其他深度神经