论文部分内容阅读
系统研究了面向复杂系统监测时变信号的实时故障检测与识别问题。采用滑窗Mallat小波快速变换克服传统小波变换的时域全局依耐性并提高计算效率,使之适应于实时故障检测;针对时变信号的故障模式识别难题,在故障检测基础上采用改进动态循环神经网络(improved dynamic recurrentneural network,IDRNN)进行智能故障识别。最后将滑动时窗小波检测模块及最优IDRNN网络模块嵌入某型完整卫星姿态控制系统仿真平台进行在线故障诊断。试验结果表明:实时条件下的滑动窗口小波变换与传统小波变换具有一致性,IDRNN对于时变信号识别具有较好的时域泛化能力,将滑窗移动时不变小波方法与IDRNN结合可以实现面向复杂系统监测实时信号的故障检测及复合模式分类。