论文部分内容阅读
针对滚动轴承复合故障信号中故障特征难以分离的问题,提出了基于多分辨奇异值分解( SVD )和独立分量分析( ICA)的复合故障诊断方法。首先利用多分辨SVD将复合故障振动信号分解为几个分量实现维数的增加;然后将分解得到的分量组合为混合信号,并利用ICA进行欠定盲分离;最后对分离后的独立分量进行Hilbert包络解调,由此实现对复合故障特征信息的分离和故障识别。通过对滚动轴承内外圈复合故障的试验信号分析表明,该方法可以有效地分离和提取轴承复合故障的特征信息。