论文部分内容阅读
To strengthen the wear resistance of AISI321 stainless steel, the TiC carbide-reinforced composite coating was produced by laser surface alloying. The microstructure, microhardness, and wear resistance of the composite coatings were investigated using optical microscopy, X-ray diffraction (XRD) meter, scanning electron microscopy (SEM), microhardness tester, and sliding wear tester. The results show that the composite coating is metallurgically bonded to the substrate and the microstructure is fine and uniform. The hardness of the composite coating is up to 400 HV, which is 2.5 times that of the substrate. Under room temperature and oil lubrication condition, the sliding wear tests indicate the friction coefficient and weight loss of the composite coating are smaller than those of substrate. The worn surface of the composite coatings is much smoother than that of the substrate, without grooves and crater. The wear resistance of the material has been greatly improved by laser surface alloying.
The microstructure, microhardness, and wear resistance of the composite coatings were investigated using optical microscopy, X-ray diffraction (XRD) meter , scanning electron microscopy (SEM), microhardness tester, and sliding wear tester. The results show that the composite coating is metallurgically bonded to the substrate and the microstructure is fine and uniform. The hardness of the composite coating is up to 400 HV, which is 2.5 times that of the substrate. Under room temperature and oil lubrication condition, the sliding wear tests indicate the friction coefficient and weight loss of the composite coating are smaller than those of substrate. The worn surface of the composite coatings is much smoother than that that of the substrate, without grooves and crater. The wear resistance of the material has been greatly improved by laser surface al loying.