论文部分内容阅读
针对GM(1,1)模型对非线性数据的沉降趋势及其波动特征无法进行准确地预测,而灰色残差模型和灰色马尔科夫模型又无法解决这个问题,提出了灰色自记忆预测模型。该模型利用了自记忆原理考虑过去和现在对未来的影响的记忆性特点,克服了GM(1,1)模型对初值比较敏感、预测精度低等局限性,提高了对波动性数据的预测能力。通过实例验证表明了灰色自记忆模型的可靠性和可行性。