论文部分内容阅读
为了解决传统粒子滤波方法粒子数量的选取较难确定的问题,提出一种非平稳动力系统突变参数识别的自适应粒子滤波方法(简称APF方法)。该方法利用系统后验概率密度与当前粒子集概率密度的K—L距离,自适应地更新采样粒子数量,在大幅降低识别过程中计算量的同时,不影响识别精度,使之更适合进行在线的结构系统参数识别。数值仿真结果发现,该方法的系统识别时间仅为传统粒子滤波方法的1/4,这证明了该方法在结构损伤在线识别中的有效性。