论文部分内容阅读
The microstructural evolution characteristics of the thermomechanically affected zone (TMAZ) alloy during friction stir processing (FSP) of thixoformed (TF) AZ91D alloy were investigated. Simultaneously, a surface composite layer reinforced by SiC particles (SiCps) was prepared on the alloy by FSP and the corresponding tribological properties were examined. The experimental results indicate that dynamic recrystallization and mechanical separation (including splitting and fracture of the primary grains) are the main mechanisms of grain refinement for the TMAZ. A composite surface reinforced by uniformly distributed SiCps was prepared on the alloy. Compared with the corresponding permanent mould casting alloy and the TF alloy without composite surface, the TF alloy with composite surface has the highest wear resistance and lowest friction coefficient.
The microstructural evolution characteristics of the thermomechanically affected zone (TMAZ) alloy during friction stir processing (FSP) of thixoformed (TF) AZ91D alloy were investigated. Simultaneously, a surface composite layer reinforced by SiC particles (SiCps) was prepared on the alloy by FSP and the corresponding tribological properties were examined. The experimental results indicate that dynamic recrystallization and mechanical separation (including splitting and fracture of the primary grains) are the main mechanisms of grain refinement for the TMAZ. A composite surface reinforced by uniformly distributed SiCps was prepared on the alloy. Compared with the corresponding permanent mold casting alloy and the TF alloy without composite surface, the TF alloy with composite surface has the highest wear resistance and lowest friction coefficient.