论文部分内容阅读
基于用户朋友关系的社交网络项目推荐技术可能泄露用户-项目隐私偏好。传统的匿名化方法由于过分依赖特定知识背景假设而存在内在的脆弱性。提出一种基于差分隐私的社交网络项目推荐方法 DPSR,该方法利用聚类技术对用户进行划分,利用拉普拉斯机制对用户-项目边的权重进行扰动。为了克服边权重中异常点对推荐结果的影响,提出了一种基于k-中心点的边权重聚类方法,该方法利用指数机制挑选出类中边权重集合的中位数。实验结果表明,DPSR优于同类方法。