论文部分内容阅读
为提高金融市场股票的预测精确度,提出自回归差分移动平均与支持向量机滚动残差模型组合的预测股票方法。以贵州茅台的股票数据为研究对象,借助ARIMA模型实现对股票数据的线性趋势预测,通过滚动残差的SVR回归模型对ARIMA模型的预测残差进行数据修正,得到ARIMA_SVR滚动残差模型的预测值。实验结果表明,相较于传统ARIMA模型,ARIMA与滚动残差SVR组合模型的性能和预测精度都得到大幅提升,具有一定的学术价值和应用意义。