暴力抗法为何屡屡发生

来源 :监督与选择 | 被引量 : 0次 | 上传用户:wxtncxmmm
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
<正> 质量技术监督部门依法打击假冒伪劣行为是被百姓称“脍”的好事儿,深得广大企业和人民群众的拥护、支持和欢迎。但近一个时期来,暴力抗拒执法的事件在各地屡发生。据国家质量技术监督局的不完全统计,自1998年年初以来,各地相继发生十多起暴力抗拒执法事件,目前这些事件的主凶或主犯大多尚未被抓捕归案。最近在浙江、福建、湖南、四川等地区又接连发生六起暴力抗拒执法事件。为此,目前国家质量技术监督局已发出通知,要求有关部门高度重视暴力抗法事件,对受到暴力抗拒执法的案件要严厉查处,绝不手软。
其他文献
<正>平面向量是高中数学的重要内容,也是高考的热点之一.平面向量作为一块独立的内容,有其自身的知识体系和独特的思想方法.它有别于代数、几何和三角,但又与它们有着紧密的
目的:建立测定人血浆中25羟基维生素D[25(OH)D]的方法,并将其应用于临床。方法:血浆样品经液-液萃取后,采用超高效液相色谱-串联质谱法测定。以氘代25(OH)D3为内标,色谱柱为Zorba
海绵铜生产中存在的主要问题及改进措施由于海绵铜生产具有原料来源广、生产工艺简单、资金投入少、产品销路好、见效快(13000~14000元/t金属)等优点。近年来,各地都在积极开展海绵铜生产,据笔
Mathematica软件是一套专门进行数学计算的软件,在高等教育的数学教学中广泛引入Mathematica软件进行辅助教学,有利于增强教学的直观性,激发学员学习兴趣,提高学员的理解能力
<正>虽然现行的高考数学考试说明中对圆锥曲线的公切线问题没有明确的要求,但因为直线与曲线相切是直线与曲线位置关系中最特殊的情况,所以圆锥曲线的切线问题常常得到命题者
<正>不等式证明的证题方法多、技巧性强,是中学数学的一个难点.函数凸性是函数在区间上变化的整体性态,具有由各种确定的不等关系式刻画的重要性质,是研究不等式的重要方法之
<正>笔者有幸参与了2014年浙江省湖州市的说题比赛,切身体会到了教师说题的价值和意义.比赛结束后,笔者所在学校的名师工作室指导组成员对这次比赛情况进行了精彩地点评,受益
<正>产权制度是市场经济重要的制度基础。改革开放以来,各地在坚持社会主义公有制的基础上,通过对传统农村集体所有制经济的股份制改造,明确了集体资产的所有权和收益分配权,
目的探讨经尿道前列腺电切术治疗良性前列腺增生症的临床体会。方法选取2009年6月至2011年6月我院良性前列腺增生症患者共130例,均采用经尿道前列腺电切术治疗。观察和记录患
<正>1为何要为学会学习、学会探究而教尽管大家都认可"授人以渔而不是授人以鱼"、"教是为了不教"等教学理念,但这些理念远没有落到实处.丘成桐先生曾尖锐地指出"数学尖子生只