论文部分内容阅读
为了解决粒子滤波的非线性全局优化问题,基于重采样的思想是移除权重小的粒子,增加权重大的粒子数量,提出利用邻域搜索重采样的粒子滤波(NIRPF)进行目标跟踪。首先,预测粒子,并利用重要序列采样(SIS)给粒子赋权值;然后,在搜索后验概率密度的高概率区过程,更新单个粒子位置,利用高斯-邻域搜索迭代地加权所有粒子;最后,进行当前状态的估计。纯方位目标跟踪问题涉及两个静态观察器和非机动和机动两类目标。蒙特卡罗仿真结果验证了提出方法的有效性,与均方根容积卡尔曼滤波、容积粒子滤波和随机搜索的粒子滤波相比,提出的