论文部分内容阅读
ART2神经网络是按照自适应谐振理论建立的一种自组织、无监督的人工神经网络。通过分析经典自适应谐振神经网络聚类过程,针对传统ART2神经网络模型对分类的不确定性和网络权值模式漂移等不足,提出了基于算法改进的ART2神经网络模型。最后对改进的ART2神经网络进行了仿真,并与经典神经网络所做仿真的结果比较,验证了改进的ART2神经网络结构大大提高了分类的正确率,有效改善了模式漂移现象,降低了空间存储消耗。