论文部分内容阅读
蚁群算法是优化领域中新出现的一种仿生进化算法,基于蚁群算法的聚类算法已经在当前的数据挖掘研究中得到应用。文中针对早期蚁群聚类算法的缺点,提出动态调整的蚁群聚类算法,通过加入运动速度不同的蚁群、半径自适应调整、短期记忆、强行放下等策略,来指导蚁群的移动行为,降低蚁群移动的随意性,减少了蚂蚁的搜索时间,提高聚类性能。仿真实验表明:改进算法能有效地提高算法效率且取得较好的聚类结果。