论文部分内容阅读
针对BP算法存在的缺陷,如训练速度慢,易收敛于局部极小点及全局搜索能力弱等,利用遗传算法能够进行全局最优化搜索这一特点,提出了一种新的用于BP网络训练的混合算法,即遗传算法与改进的BP算法相结合的混合训练方法.将所提出的混合训练方法应用于神经网络式电力负荷预测中,结果表明:所提出的算法与单一的BP算法相比,不仅可避免陷入局部极小点,而且提高了网络的训练速度和负荷预测精度.