论文部分内容阅读
在ACO算法原理及框架的基础之上,将蚁群优化算法引入到神经网络的训练中来,提出了ACO训练神经网络的基本原理和方法步骤,并应用于发动机齿轮箱故障的故障诊断。本文采取经典的“频域”分析方法对齿轮箱进行故障诊断,并建立了基于蚁群神经网络的齿轮箱故障诊断模型。结果表明,用ACO算法训练的神经网络具有较高的故障诊断精度,可以有效地诊断齿轮箱中的故障,提高了诊断的效率和质量。