论文部分内容阅读
Al-Mn-pillared montmorillonite(AMPM) was prepared by using the artificial Na-montmoril-lonite from the Qingfengshan bentonite mine as starting materials mixed with Al-Mn pillaring solutions at different Al/Mn molar ratios (R). The basal spacing and specific surface area of the materials were increased significantly compared with untreated clays. When R = 0.5, the d (001) value and specific surface area of pillared montmoril-lonite were 1.8987 ran and 146.01 m2 g-1, respectively. The thermal stability was determined using calcined tests , X-ray diffraction ( XRD ) analysis, thermal gravimetry and differential thermal analysis (TG - DTA). The materials formed at initial R = 0.5 exhibited a high stability, the basal interlayer spacing was stabilized at 1.7859 nm after calcined for 2 h at 300℃. The adsorption behavior of the materials was studied by adsorption experiments. The results show the AMPM and calcined Al-Mn-pillared montmorillonite ( CAMPM) exhibit a strong capacity of adsorbing the Zn(Ⅱ) in aqueous
Al-Mn-pillared montmorillonite (AMPM) was prepared by using the artificial Na-montmoril-lonite from the Qingfengshan bentonite mine as starting materials mixed with Al-Mn pillaring solutions at different Al / Mn molar ratios (R). The basal spacing and specific surface area of the materials were significantly increased with untreated clays. When R = 0.5, the d (001) value and specific surface area of pillared montmoril-lonite were 1.8987 ran and 146.01 m2 g-1, respectively. The thermal stability was determined using calcined tests, X-ray diffraction (XRD) analysis, thermal gravimetry and differential thermal analysis (TG - DTA). The materials formed at initial R = 0.5 exhibited a high stability, the basal interlayer spacing was stabilized at 1.7859 nm after calcined for 2 h at 300 ° C. The adsorption behavior of the materials was studied by adsorption experiments. The results show the AMPM and calcined Al-Mn-pillared monmormorillonite (CAMPM) exhibit a strong capacity of adsorbin g the Zn (II) in aqueous