论文部分内容阅读
利用时间窗提升铁矿石期货价格预测精度对铁矿石期货市场平稳发展具有重要意义。本文选取2013年10月至2021年12月铁矿石期货价格及同期相关数据,采用STL分解方法对铁矿石期货价格进行特征分析,构造基于自注意力机制的CNN-LSTM模型,预测铁矿石期货价格并进行对比分析。结果表明:将铁矿石期货季节性规律应用于时间窗可以提升铁矿石期货价格预测结果准确性。在4、7、30、365天时间窗下,最佳预测结果是4天时间窗。模型预测结果的平均绝对误差MAE值为11.5,相较于LSTM、LSTM-ATT、CNN-LSTM基准模型分别降低了32.70%、19.12%、22.28%。构建模型具有较好的泛化性,MAE在7天、30天、365天时间窗下均为最低。基于此,应关注价格的时间窗特征,完善铁矿石期货市场环境,推动铁矿石现货市场保供稳价。